4.6 Laminar Boundary Layer Separation – Stratford Criterion

Upstream of the separation point, the flow is moving forward and the wall shear stress τ_w is positive. Downstream of the separation point, the near-wall flow is reverse and $\tau_w < 0$. At the separation point, $\tau_w = 0$.

Separation may only occur if $\frac{dp}{dx} > 0$ (or, equivalently, $\frac{du}{dx} < 0$).

Criteria for separation:

- Falkner-Skan solutions: $m = -0.091$
- Pohlhausen’s solution: $\lambda_P = -7$ to -8 (the solution gives $\lambda = -12$)
- Thwaites’ method: $\lambda = -0.0842$
- Stratford criterion: see below

- Beyond the separation point, the boundary layer approximation is no longer valid and none of these methods can be used for calculating τ_w. The main type of drag in the separated region is form (pressure) drag.
Stratford criterion:

Separation occurs when \[C_p \left(\frac{dC_p}{dx} \frac{C_p}{x} \right)^2 = 0.0104 \]

where \(\bar{x} \) is an effective origin and the pressure recovery coefficient \(C_p \) is defined in terms of the minimum pressure \(p_m \) along the wall and the corresponding free stream velocity \(u_m \) as

\[C_p = \frac{p - p_m}{\frac{1}{2} \rho u_m^2} = 1 - \left(\frac{u_e}{u_m} \right)^2 \]

The definition of \(\bar{x} \) depends on the variation of \(dp/dx > 0 \) along the b.l. Three different cases may be considered, as follows.

(a) \(dp/dx > 0 \) from the start of the boundary layer (\(x = 0 \)):

\[\bar{x} = x ; \; u_m, p_m \text{ are the values at } x = 0. \]

At \(\bar{x} = 0 \), \(C_p = 0 \). Compute \(C_p \left(\frac{dC_p}{dx} \frac{C_p}{x} \right)^2 \) as it increases with increasing \(\bar{x} \).

When this becomes 0.0104, separation occurs.

(b) \[\begin{cases} \frac{dp}{dx} = 0, & 0 \leq x \leq x_m \\ \frac{dp}{dx} > 0, & x_m < x \end{cases} \]

then use \(u_m, p_m \) at \(x_m \) but \(\bar{x} = x \) (from start).
(c) The pressure gradient is initially favourable and then adverse, as on the top surface of an airfoil, i.e. \(\frac{dp}{dx} < 0 \), \(0 \leq x \leq x_m \)
\(\frac{dp}{dx} > 0 \), \(x_m < x \)

To define \(\bar{x} \), consider an equivalent problem with \(\frac{dp}{dx} = 0 \) upstream of \(x_m \) and such that it has the same \(\theta \) (momentum thickness) at \(x_m \) as the actual problem. Then, from Thwaites’ method:

\[
\bar{x}_m = \int_0^{x_m} \left(\frac{u_e}{u_m} \right)^5 \, dx = \ldots \quad \text{(can be computed for a given } u_e(x)\text{)}
\]

and \(\bar{x} = x - (x_m - \bar{x}_m) \)

Notice that \(\overline{C_p} = 0 \) at \(x = x_m \). Compute \(\overline{C_p} \left(\frac{\overline{x} C_p}{dx} \right)^2 \) till it becomes 0.014.