Chapter 3

Short Column Design
By Noel. J. Everard' and Mohsen A. Issa”

3.1 Introduction

The majority of reinforced concrete columns are subjected to primary stresses caused by flexure, axial
force, and shear. Secondary stresses associated with deformations are usually very small in most
columns used in practice. These columns are referred to as "short columns." Short columns are
designed using the interaction diagrams presented in this chapter. The capacity of a short column is the
same as the capacity of its section under primary stresses, irrespective of its length.

Long columns, columns with small cross-sectional dimensions, and columns with little end restraints
may develop secondary stresses associated with column deformations, especially if they are not braced
laterally. These columns are referred to as "slender columns". Fig. 3-1 illustrates secondary moments
generated in a slender column by P- effect. Consequently, slender columns resist lower axial loads
than short columns having the same cross-section. This is illustrated in Fig. 3-1. Failure of a slender
column is initiated either by the material failure of a section, or instability of the column as a member,
depending on the level of slenderness. The latter is known as column buckling. Design of slender
columns is discussed in Chapter 4.

The classification of a column as a “short column” or a “slender column” is made on the basis of its
“Slenderness Ratio,” defined below.

Slenderness Ratio: k¢, /r

where, 7, is unsupported column length; k is effective length factor reflecting end restraint and lateral
bracing conditions of a column; and r is the radius of gyration reflecting the size and shape of a column
cross-section. A detailed discussion of the parameters involved in establishing the slenderness ratio is
presented in Chapter 4. Columns with slenderness ratios less than those specified in Secs. 10.12.2 and
10.13.2 for non-sway and sway frames, respectively, are designed as short columns using this chapter.
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Non-sway frames are frames that are braced against sidesway by shear walls or other stiffening
members. They are also referred to as “braced frames.” Sway frames are frames that are free to
translate laterally so that secondary bending moments are induced due to P- effects. They are also
referred to as “unbraced frames.” The following are the limiting slenderness ratios for short column
behavior:

Non-sway frames: ke, <34-12(M,/M,) (3.1)
r
k¢

Sway frames: —= <22 (3.2)
r

Where the term [34-12(M,/M,) ] <40 and the ratio M,/M, is positive if the member is bent in single
curvature and negative if bent in double curvature.
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Fig. 3-1 Failure Modes in Short and Slender Columns

3.2 Column Sectional Capacity

In short columns the column capacity is directly obtained from column sectional capacity. The theory
that has been presented in Section 1.2 of Chapter 1 for flexural sections, also applies to reinforced
concrete column sections. However, column sections are subjected to flexure in combination with axial
forces (axial compression and tension). Therefore, the equilibrium of internal forces changes, resulting
in significantly different flexural capacities and behavioral modes depending on the level of
accompanying axial load. Fig. 3-2 illustrates a typical column section subjected to combined bending
and axial compression. As can be seen, different combinations of moment and accompanying axial
force result in different column capacities and corresponding strain profiles, while also affecting the
failure modes, i.e., tension or compression controlled behavior. The combination of bending moment
and axial force that result in a column capacity is best presented by “column interaction diagrams.”
Interaction diagrams are constructed by computing moment and axial force capacities, as shown
below, for different strain profiles.

B =C+C+C,—T, (3-3)

M, =Cx,+C x +Tx, (3-4)
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Fig. 3-2 Analysis of a column section
3.2.1 Column Interaction Diagrams

The column axial load - bending moment interaction diagrams included herein (Columns 3.1.1
through Columns 3.24.4) conform fully to the provisions of ACI 318-05. The equations that were used
to generate data for plotting the interaction diagrams were originally developed for ACI Special
Publication SP-7°. In addition, complete derivations of the equations for square and circular columns
having the steel arranged in a circle have been published in ACI Concrete International®. The original
interactison diagrams that were contained in SP-7 were subsequently published in Special Publication
SP-17A".

The related equations were derived considering the reinforcing steel to be represented as follows:

(a) For rectangular and square columns having steel bars placed on the end faces only, the
reinforcement was assumed to consist of two equal thin strips parallel to the compression face
of the section.

(b) For rectangular and square columns having steel bars equally distributed along all four faces of
the section, the reinforcement was considered to consist of a thin rectangular or square tube.

(c) For square and circular sections having steel bars arranged in a circle, the reinforcement was
considered to consist of a thin circular tube.

The interaction diagrams were developed using the rectangular stress block, specified in ACI 318-05
(Sec. 10.2.7). In all cases, for reinforcement that exists within the compressed portion of the depth
perpendicular to the compression face of the concrete (a = c), the compression stress in the steel was
reduced by 0.85 £, to account for the concrete area that is displaced by the reinforcing bars within the

compression stress block.

The interaction diagrams were plotted in non-dimensional form. The vertical coordinate
[K,=P /(f 4,)] represents the non-dimensional form of the nominal axial load capacity of the

3 Everard and Cohen. “Ultimate Strength Design of Reinforced Concrete Columns,” ACI Special Publication SP-7, 1964,
pp- 152-182.

* Everard, N.J., “Axial Load-Moment Interaction for Cross-Sections Having Longitudinal Reinforcement Arranged in a
Circle”, ACI Structural Journal, Vol. 94, No. 6, November-December, 1997, pp. 695-699.
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section. The horizontal coordinate [R, =M, /(f] A,h) ] represents the non-dimensional nominal

bending moment capacity of the section. The non-dimensional forms were used so that the interaction
diagrams could be used equally well with any system of units (i.e. SI or inch-pound units). The
strength reduction factor (¢) was considered to be 1.0 so that the nominal values contained in the
interaction diagrams could be used with any set of ¢ factors, since ACI 318-05 contains different ¢
factors in Chapter 9, Chapter 20 and Appendix “C”.

It is important to point out that the ¢ factors that are provided in Chapter 9 of ACI 318-05 are based on
the strain values in the tension reinforcement farthest from the compression face of a member, or at the
centroid of the tension reinforcement. Code Section 9.3.2 references Sections 10.3.3 and 10.3.4 where
the strain values for tension control and compression control are defined.

It should be note that the eccentricity ratios (e/h=M /P, sometimes included as diagonal lines on
interaction diagrams, are not included in the interaction diagrams. Using that variable as a coordinate
with either K, or R, could lead to inaccuracies because at the lower ends of the diagrams the e/h lines

converge rapidly. However, straight lines for the tension steel stress ratios f, / f, have been plotted for
assistance in designing splices in the reinforcement. Further, the ratio f(/f, =1.0 represents steel
straing, = f,/ E,, which is the boundary point for the ¢ factor for compression control, and the

beginning of the transition zone for linear increase of the ¢ factor to that for tension control.

In order to provide a means of interpolation for the ¢ factor, other strain lines were plotted. The strain
line forg, =0.005, the beginning of the zone for tension control has been plotted on all diagrams. For

steel yield strength 60.0 ksi, the intermediate strain line for &, =0.035 has been plotted. For Steel yield
strength 75.0 ksi, the intermediate strain line for &, =0.038 has been plotted. It should be noted that all

strains refer to those in the reinforcing bar or bars farthest from the compression face of the section.
Discussions and tables related to the strength reduction factors are contained in two publications in
Concrete International®’.

In order to point to designs that are prohibited by ACI 318-05, Section 10.3.5, strain lines for
g, =0.004 have also been plotted. Designs that fall within the confines of the lines for ¢, =0.004 and

K, less than 0.10 are not permitted by ACI 318-05. This includes tension axial loads, with K,

negative. Tension axial loads are not included in the interaction diagrams. However, the interaction
diagram lines for tension axial loads are very nearly linear from K, =0.0 to R =0.0 with

/ . . . . .
[K,=4,f,/(f.4,)] This is discussed in the next section.

6 Everard, N. J., “Designing With ACI 318-02 Strength Reduction Factors”, Concrete International, August, 2002, Vol. 24,
No. 8, pp 91-93.

! Everard, N. J., “Strain Related Strength Reduction Factors (§) According to ACI 318-02, Concrete International, August,
2002, Vol. 34, No. 8, pp. 91-93.



Straight lines for K, are also provided on each interaction diagram. Here, K refers to the
maximum permissible nominal axial load on a column that is laterally reinforced with ties conforming
to ACI 318-05 Section 7.10.5. Defining K, as the theoretical axial compression capacity of a member

withR =0.0,K  =0.80K, or, considering ACI 318-05 Eq. (10-2), without the ¢ factor,

P, =08] O.SSfC/(Ag -A,)+ f,4,] (3-3)
Then,
Kmax = Pmax/f‘c/Ag (3-6)

For columns with spirals conforming with ACI 318-05 Section 7.10.4, values of K, from the
interaction diagrams are to be multiplied by 0.85/0.80 ratio.

The number of longitudinal reinforcing bars that may be contained is not limited to the number shown
in the illustrations on the interaction diagrams. They only illustrate the type of reinforcement patterns.
However, for circular and square columns with steel arranged in a circle, and for rectangular or square
columns with steel equally distributed along all four faces, it is a good practice to use at least 8 bars
(and preferably at least 12 bars). Although side steel was assumed to be 50 percent of the total steel for
columns having longitudinal steel equally distributed along all four faces, reasonably accurate and
conservative designs result when the side steel consists of only 30 percent of the total steel. The
maximum number of bars that may be used in any column cross section is limited by the maximum
allowable steel ratio of 0.08, and the conditions of cover and spacing between bars.

3.2.2 Flexure with Tension Axial Load

Many studies concerning flexure with tension axial load show that the interaction diagram for tension
axial load and flexure is very nearly linear between R, and the tension axial load value K, as is shown

in Fig. 3-3. Here, R, is the value of R, forK, =0.0,and K,, =4, f, /(fc/Ag)
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Fig. 3.3 Flexure with axial tension



Design values for flexure with tension axial load can be obtained using the equations:
K,=K,[L0-R /R,] (3-7)
R, =R[.0-K,/K,] (3-8)

Also, the tension side interaction diagram can be plotted as a straight line using R,and K, as is shown

in Fig. 3.3.

nt

3.3 Columns Subjected to Biaxial Bending

Most columns are subjected to significant bending in one direction, while subjected to relatively small
bending moments in the orthogonal direction. These columns are designed by using the interaction
diagrams discussed in the preceding section for uniaxial bending and if required checked for the
adequacy of capacity in the orthogonal direction. However, some columns, as in the case of corner
columns, are subjected to equally significant bending moments in two orthogonal directions. These
columns may have to be designed for biaxial bending.

A circular column subjected to moments about two axes may be designed as a uniaxial column acted
upon by the resultant moment;

M, = ,/Mﬁx + Mﬁy > oM, = ,/Mix + Mﬁy (3-9)

For the design of rectangular columns subjected to moments about two axes, this handbook provides
design aids for two methods: 1) The Reciprocal Load (1/P;) Method suggested by Bresler®, and 2) The
Load Contour Method developed by Parme, Nieves, and Gouwens’. The Reciprocal Load Method is
more convenient for making an analysis of a trial section. The Load Contour Method is more suitable
for selecting a column cross section. Both of these methods use the concept of a failure surface to
reflect the interaction of three variables, the nominal axial load P, and the nominal biaxial bending
moments My, and M;y, which in combination will cause failure strain at the extreme compression
fiber. In other words, the failure surface reflects the strength of short compression members subject to
biaxial bending and compression. The bending axes, eccentricities and biaxial moments are illustrated
in Fig. 3.4.

¥ Bresler, Boris. “Design Criteria for Reinforced Columns under Axial Load and Biaxial Bending,” ACI Journal
Proceedings, V. 57, No.11, Nov. 1960, pp. 481-490.

? Parme, A.L. Nieves, J. M. and Gouwens, A. “Capacity of Reinforced Rectangular Columns Subjected to Biaxial
Bending.” ACI Journal Proceedings, V. 63, No. 9, Sept. 1966, pp.911-923.
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Fig. 3.4 Notations used for column sections subjected to biaxial bending

A failure surface S; may be represented by variables P,, e, and ey, as in Fig. 3.5, or it may be
represented by surface S, represented by variables P,, M., and M,y as shown in Fig. 3.6. Note that S,
is a single curvature surface having no discontinuity at the balance point, whereas S, has such a
discontinuity. (When biaxial bending exists together with a nominal axial force smaller than the lesser
of P, or 0.1 1. A, it is sufficiently accurate and conservative to ignore the axial force and design the
section for bending only.)
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3.3.1 Reciprocal Load Method

In the reciprocal load method, the surface S; is inverted by plotting 1/P, as the vertical axis, giving the
surface S3, shown in Fig. 3.7. As Fig. 3.8 shows, a true point (1/Py1, exa, €y8) on this reciprocal failure
surface may be approximated by a point (1/Py;, exa, €y8) on a plane S’3 passing through Points A, B,
and C. Each point on the true surface is approximated by a different plane; that is, the entire failure
surface is defined by an infinite number of planes.



Point A represents the nominal axial load strength P,, when the load has an eccentricity of exa with ey
= 0. Point B represents the nominal axial load strength P,, when the load has an eccentricity of eyp
with ex = 0. Point C is based on the axial capacity P, with zero eccentricity. The equation of the plane
passing through the three points is;

Lo 65-10)
Pni an Pny Po
Where:
P.i:  approximation of nominal axial load strength at eccentricities e and ey
P.x: nominal axial load strength for eccentricity e, along the y-axis only (x-axis is axis of
bending)
P,y nominal axial load strength for eccentricity e, along the x-axis only (y-axis is axis of
bending)
P,: nominal axial load strength for zero eccentricity
1
Pa
Failure surface
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Fig. 3.7 Failure surface S3,, which is reciprocal Fig. 3.8 Graphical representation of Reciprocal
of surface S1 Load Method

For design purposes, when ¢ is constant, the 1/P,; equation given in Eq. 3.9 may be used. The variable
K, =P,/ (f ‘c Ag) can be used directly in the reciprocal equation, as follows:

P t,t. 1 (3-11)
K. K. K. K

ni nx ny 0

Where, the values of K refer to the corresponding values of Py, as defined above. Once a preliminary

cross section with an estimated steel ratio pg has been selected, the actual values of Ryx and R,y are
calculated using the actual bending moments about the cross section X and Y axes, respectively. The

corresponding values of K,y and K, are obtained from the interaction diagrams presented in this
Chapter as the intersection of appropriate R, value and the assumed steel ratio curve for pg. Then, the



value of the theoretical compression axial load capacity K, is obtained at the intersection of the steel
ratio curve and the vertical axis for zero R,,.

3.3.2 Load Contour Method

The load contour method uses the failure surface S, (Fig. 3.6) and works with a load contour defined
by a plane at a constant value of Py, as illustrated in Fig. 3.9. The load contour defining the relationship
between M,x and My, for a constant P, may be expressed nondimensionally as follows:

(M“XJ +[M"YJ =1 (3-12)
Mnox Mnoy

For design, if each term is multiplied by ¢, the equation will be unchanged. Thus M,x, Myy, Moy, and
My, which should correspond to ¢Myx, dMupy, PMpox , and ¢Miey, respectively, may be used instead of
the original expressions. This is done in the remainder of this section. To simplify the equation (for
application), a point on the nondimensional diagram Fig. 3.10 is defined such that the biaxial moment

capacities My, and M,y at this point are in the same ratio as the uniaxial moment capacities Mox and
M,y; thus

nx: 00X 3_12
MM (3-12)
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Fig. 3.10 Load contour for constant P, on failure surface



In physical sense, the ratio 3 is the constant portion of the uniaxial moment capacities which may be
permitted to act simultaneously on the column section. The actual value of § depends on the ration
P./P,; as well as properties of the material and cross section. However, the usual range is between 0.55
and 0.70. An average value of = 0.65 is suggested for design. The actual values of [} are available

from Columns 3.25.
The load contour equation given above (Eq. 3-10) may be written in terms of 3, as shown below:

log 0.5/log 8 log 0.5/log B
M
M nx + ny — 1 (3 _ 1 4)
M M

nox noy

A plot of the Eq. 3-12 appears as Columns 3.26. This design aid is used for analysis. Entering with
M;/Mox and the value of B from Columns 3.25, one can find permissible M,,/M,y. The relationship
using 3 may be better visualized by examining Fig. 3.10. The true relationship between Points A, B,
and C is a curve; however, it may be approximated by straight lines for design purposes. The load
contour equations as straight line approximation are:

) M, M, M, \1-B

iy For —>—> M, =M, +M_ | —| — (3-13)
MnX MOX MOX B
M M M _

ii) For —™ < M =M, +M, | Mo [1ZP (3-14)
Mnx Mox g Moy B

For rectangular sections with reinforcement equally distributed on all four faces, the above equations
can be approximated by;

M, =M, + M[Ej{—lg J (3-15)
For M., < M, or M., < b
MUX MOX MnX h

where b and h are dimensions of the rectangular column section parallel to x and y axes, respectively.
Using the straight line approximation equations, the design problem can be attacked by converting the
nominal moments into equivalent uniaxial moment capacities Mo or M,y. This is accomplished by;
(a) assuming a value for b/h
(b) estimating the value of 3 as 0.65
(c) calculating the approximate equivalent uniaxial bending moment using the appropriate one of
the above two equations
(d) choosing the trial section and reinforcement using the methods for uniaxial bending and axial
load.

The section chosen should then be verified using either the load contour or the reciprocal load method.



3.4 Columns Examples

COLUMNS EXAMPLE 1 -

faces (slenderness ratio found to be below critical value)

For a rectangular tied column with bars equally distributed along four faces, find area of steel.

Given: Loading

Vs

P.=560 kip and M,= 3920 kip-in. 4’

Assume ¢ =0.70 or,

Nominal axial load P, = 560/0.70 = 800 kip

h=20"

Required area of steel for a rectangular tied column with bars on four

I
. |
Nominal moment M, = 3920/0.70 = 5600 kip-in. =N _]l__ L
| 2 i
Materials |
Compressive strength of concrete £ = 4 ksi 2 ' Pu
Yield strength of reinforcement f, = 60 ksi ,
Nominal maximum size of aggregate is 1 in. ’i "
Design conditions |
Short column braced against sidesway. S
) ACI Desi
Procedure Calculation 318-05 Zs_'gn
Section '
Determine column section size. Given: h=201in. b=16in.
Determine reinforcement ration p, P,=800 kip .
. . M, = 5600 kip-in.
using known values of variables on h=10i
appropriate interaction diagram(s) b B 16 iﬁ
and compute required cross section B " _ .2
area A, of longitudinal reinforcement. A;=bxh=20x16=320in.
P 800
A) Compute K, =—"— K, =7~—==0.625
" r, (4)320)
M
B) Compute g - " anﬂ =0.22
fiAh (4)(320)(20)
h-35 20-5
C) Estimate ¥ = T VE =0.75
D) Determine the appropriate For a rectangular tied column with bars
interaction diagram(s) along four faces, f/=4 ksi, f, = 60 ksi, and
an estimated y of 0.75, use R4-60.7 and R4- | 10.2
60.8. For k,=0.625 and R,= 0.22 10.3
E) Read p, for k,and R, values from | Read p,=0.041 fory=0.7 and Columns
appropriate interaction diagrams Pe=0.039 for v =0.8 322
Interpolating; p, = 0.040 for y = 0.75 (R4-60.7)
F) Compute required 4, from A,=p, | Required 4, = 0.040x 320 in.’ and 3.2.3
4 =12.8in (R4-60.8)




COLUMNS EXAMPLE 2 -  For a specified reinforcement ratio, selection of a column section size for a
rectangular tied column with bars on end faces only

For minimum longitudinal reinforcement (p,= 0.01) and column section dimension h = 16 in., select the column
dimension b for a rectangular tied column with bars on end faces only.

Given: Loading
P,= 660 kips and M,= 2790 kip-in.
Assume ¢ = 0.70 or,
Nominal axial load P, = 660/0.70= 943 kips
Nominal moment M, = 4200/0.70= 3986 kip-in.

Materials

Compressive strength of concrete f/=4 ksi
Yield strength of reinforcement f,, = 60 ksi
Nominal maximum size of aggregate is 1 in.

Design conditions
Slenderness effects may be neglected because

h=16"

?

b

k ¢ ,/h is known to be below critical value \%
ACI Desi
Procedure Calculation 318-05 2\3_'3”
Section '
Determine trial column dimension b P ”i 943, kips, M, = 3986 kip-in.
corresponding to known values of h N 16 . ]
variables on appropriate interaction f. = 4ksi, =60 ksi
diagram(s). Pz =0.01
A) Assume a series of trial column sizes b, 24 26 28
in inches; and compute 4,=bxh , in2 384 416 448
P 943 943 943
B) Compute K,=—" (4)384) (4)416) (4)(448)
f.A4, =0.61 =0.57 -0.53
3986 3986 3986
C) Compute g - M n (4)384)16)  (4)416)16) (4)448)16)
fiA,h =0.16 =0.14 =0.14
- h-5
D) Estimate y ~ 0.7 0.7 0.7
h
D) Determine the appropriate interaction For a rectangular tied column with bars
diagram(s) along four faces, f/=4 ksi, f, =60 ksi,
and an estimated y of 0.70, use
Interaction Diagram L.4-60.7
E) Read p, for k,and R, values Fory= 10.2 Columns
. : . .01 014 011
0.7, select dimension corresponding to p, 0.018 00 0.0 10.3 3.8.2
nearest desired value of p, = 0.01 Therefore, try a 16 x 28-in. column (L4-60.7)




COLUMNS EXAMPLE 3 -  Selection of reinforcement for a square spiral column (slenderness ratio is
below critical value)

For the square spiral column section shown, select reinforcement.

. h=18"
Given: Loading , Yh ,
P,= 660 kips and M,= 2640 kip-in. 1 1
Assume ¢ =0.70 or, * ’
Nominal axial load P, = 660/0.70= 943 kips
Nominal moment M, = 2640/0.70= 3771 kip-in. .
(= o]
Materials &
Compressive strength of concrete £/ =4 ksi
Yield strength of reinforcement £, = 60 ksi J :
Nominal maximum size of aggregate is 1 in. ¥ ; Pu
e
Design conditions Y
Column section size h=b =18 in :
Slenderness effects may be neglected because |
k ¢ ,/h is known to be below critical value A
ACI Desi
Procedure Calculation 318-05 esign
. Aid
Section
Determine reinforcement ration p, P=943 kips .
. . M, =3771 kip-in.
using known values of variables on h=18i
appropriate interaction diagram(s) b B 18 .
and compute required cross section - lil' a2
area A4, of longitudinal Ag=bxh= 18x18=324 in.
reinforcement.
P 943
A) Compute g, =—" Ky=r—~—=0.73
"y A, (4)324)
M 3771
B) Compute  —_""= R=r~———=0.16
" A " (4)320)18)
C) Estimate }/zh—5 SLLLE N
h 18
D) Determine the appropriate For a square spiral column, f/=4 ksi,
interaction diagram(s) /=60 ksi, and an estimated y of 0.72, use
Interaction Diagram S4-60.7 and S4-60.8
E) Read p, for k,and R, values. For k,=0.73 and R,= 0.16 and, 10.2 Columns
_ _ 10.3 3.20.2
=0.70: =0.035
DU (S4-60.7)
for y=0.72: p,=0.034 (S4-60.8)
A4,=0.034x 320 in.” = 12.8 in’




COLUMNS EXAMPLE 4 - Design of square column section subject to biaxial bending using resultant

moment

Select column section size and reinforcement for a square column with p,<0.04 and bars equally distributed along

four faces, subject to biaxial bending.

h=?
Given: Loading
P,=193 kip, M= 1917 kip-in., and M,,= 769 kip-in. £ Y}(‘ £
Assume ¢ = 0.65 or, A— |
Nominal axial load P, = 193/0.65= 297 kips :
Nominal moment about x-axis M,,, = 1917/0.65= 2949 kip-in. ' e, l( R
Nominal moment about y-axis M,, = 769/0.65= 1183 kip-in. T Jor
o y+4—— -y
. |
Materials i
Compressive strength of concrete 1/ =5 ksi i
Yield strength of reinforcement f, = 60 ksi N— |
Nominal maximum size of aggregate is 1 in. X
ACI .
Procedure Calculation 318-05 Dif’_'g”
Section :
Assume load contour curve at For a square column: h=b
constant P, is an ellipse, and M., =+/(2949) +(1183) =3177 kip-in.
determine resultant moment A, from
Mnr: \ Mnx2+Mny2
A) Assu.m§ a series of trial column 14 16 18
sizes h, in inches.
B) Compute 4,=/’, in.? 196 256 324
p 297 297 297
C) Compute K, =—" (5)196) (5)256) (5)324)
chg =0.30 =0.23 =0.18
M 3177 3177 3177
D) Compute g — (5)X196)14)  (5)256)16)  (5)(324)18)
feAh -023 =0.16 =0.11
E) Estimate y ~ /=2 0.64 0.69 0.72
F) Determine the appropriate For a rectangular tied column with f/=5 Columns
interaction diagram(s) ksi, f, = 60 ksi. Use Interaction Diagrams 3.3.1
R5-60.6, R5-60.7, and R5-60.8. g}{;fo.@,
E) Read p, for R,and k, values, 0.064 0.030 0.012 (Ré_éo 7
Fory=0.60, Fory=0.70, and Fory = 0.048 0.026 0.011 and 333
?.fo A N (R5-60.8)
nterpolating for y in ste
TPoTating Tty TSP 0.058 0.026 0.012
Therefore, try h =15 in.




Determine reinforcement ration p,
using known values of variables on
appropriate interaction diagram(s) and
compute required cross section area A4,
of longitudinal reinforcement.

f

A) Compute g, = L,
fed,
M

B) Compute R,=

f(,'Agh
5

C) Estimate y ~ h-

D) Determine the appropriate
interaction diagram(s)

E) Read p, for k, and R, values from
appropriate interaction diagrams

F) Compute required 4, from 4,,=p,
A, and add about 15 percent for skew
bending

Ags=h’=(15)=225in’
P,=297 kip
M,,=3177 kip-in.

297

= =0.264
Kn (5)(225)
3177
Ry=r———=0.188
" (5)225)(15)
N 15-5 —0.67
15

For a rectangular tied column with £/ =5

ksi, f, = 60 ksi, and y = 0.67. Use
Interaction R5-60.6 and R5-60.7.
For k,=0.264, R,= 0.188, and

1=0.60: | p,=0.043

y=0.70: | p,=0.034

for y=0.67: | p,=0.037

Required 4, = 0.037x 225 in.
=8.26 in’

Use A4,,~9.50 in.?

10.2
10.3

Columns
3.3.1

(R5-60.6)
and 3.3.2
(R5-60.7)




COLUMNS EXAMPLE 5-  Design of circular spiral column section subject to very small design

moment

For a circular spiral column, select column section diameter h and choose reinforcement. Use relatively high
proportion of longitudinal steel (i.e., p, = 0.04). Note that k / ,/h is known to be below critical value.

Given: Loading
P.= 940 kips and M,= 480 kip-in.
Assume ¢ =0.70 or,
Nominal axial load P, = 940/0.70= 1343 kips
Nominal moment M, = 480/0.70=686 kip-in.

hv
l—2 ]

Materials

Compressive strength of concrete /=5 ksi
Yield strength of reinforcement £, = 60 ksi
Nominal maximum size of aggregate is 1 in.

Design condition

Slenderness effects may be neglected because

k ¢ P,/h is known to be below critical value \j“
ACI .
Procedure Calculation 318-05 Dzs_léz;n
Section '
Determine trial column dimensionb | £ ”/: 1343 'kips, M, = 686 kip-in.
corresponding to known values of f.=5ksi
variables on appropriate interaction Jy =60 ksi
diagram(s). Pz =0.04
A) Assume a series of trial column
siles b, in inches; 11123 21061 32104
and compute 4,= ah/2)%, in?
M 686 686 686
B) Compute g — (5)113)12)  (5)201)16)  (5)314)20)
fedgh =0.101 =0.043 =0.021
C) Estimate » ~ /7 0.64 0.69 0.72
D) Determine the appropriate For a circular column with f’= 5 ksi, Columns
interaction diagram(s) J» =60 ksi. Use Interaction Diagrams 3.15.1
C5-60.6, C5-60.7, C5-60.7 and C5-60.8. (3C155'620-6)’
E) Read R, and p, values , after 0.90 1.14 1.23 (é 5_'6 0.7)
interpolation 1.25 and 3 1'5 3’
0.90 1.14 1.24 (C5-60.8)
F) Compute A, =f% , in. 208 236 217
G) Compute hzz\/ga i 19.5 17.3 16.6
z Therefore, try 17 in. diameter column




Determine reinforcement ration p,
using known values of variables on
appropriate interaction diagram(s)
and compute required cross section
area Ay, of longitudinal
reinforcement.

A) Compute g, = i

'

chg

B) Compute R,= M,

S Ah
h-5

C) Estimate y ~
D) Determine the appropriate
interaction diagram(s)

E) Read p, for k,and R, values from
appropriate interaction diagrams

2
17 2
Ag=7m| — =227in .
2

K=o 118

" (5)227)
R= 000356

" (5)227)17)

17-5

Y= =0.71

For a circular column with f '=5ksi and

;=60 ksi. Use Interaction C5-60.7.
For k= 1.18, R,= 0.0356, and

y=0.71: | p,=0.040

Columns

F) Compute required 4, from 4,=p,
A

g

Required 4, = 0.040x 227 in.
=9.08 in’

Columns
3.15.2
(C5-60.7)






