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2. The Laplace Transform 
 

2.1 Review of Laplace Transform Theory 
 

Pierre Simon Marquis de Laplace (1749-1827) –  
French astronomer, mathematician and politician,  
Minister of Interior for 6 weeks under Napoleon,  
President of Academie Francaise under Louis XVI.  
 
Complex Variable = variable  consisting of real and 
imaginary quantities          s = σ + j ω 
 
Graphical Representation of Complex Numbers in   
complex plane (Re = real , Im = imaginary) or (σ , ω)   
Example,      s = σ + j ω = - 3 + j 4 
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Complex Function 
 
Functions of complex numbers are called complex functions. As an 
example: 

 
 

 
 
Both Gx and Gy are real quantities. 

 
The magnitude of G(s) is  
 
|G(s) |= √( Gx

2 + Gy
2)  

 
The angle θ of G(s) is 
  
 
θ = tan -1 (Gy

  / Gx
 ) 

 
The angle takes positive values when measured counterclockwise from 
the positive real axis. 
 
The complex conjugate of the function G(s) is  
 

yGjxG)s(G −=∗   

 
Poles and Zeros 
 
poles = s-values for which the function G(s) tends toward 
infinity   
 
zeros = s-values for which the function G(s) equals zero   

yx GjG)s(G +=
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Example 
The complex function 
 

2)25s)(5s)(2s(s

)15s)(1s(K)s(G
+++

++
=  

has  
- zeros at s = -1, -15  
- single poles at s = 0, -2, -5,  
- a double pole (multiple pole of order 2) at s = -25. 

 
Note that G(s) → 0 as s →∞, i.e  
s →∞ is an infinite zero  
while  
s = -2, -10 are finite zeros. 
 
Example  
The above complex function is equivalent to  
 

)s/251)(s/51)(s/21(
)s/151)(s/11(

s
K

)s/251)(s/51)(s/21(s
)s/151)(s/11(Ks)s(G

35

2

+++
++

⋅=
+++

++
=  

 
For large values of s 
 
 

3s s
K)s(Glim ≈∞→  

i.e. G(s) has a triple zero at s → ∞.   
 
If infinite zeros are included, G(s) has the same number of 
poles and zeros, 5 poles and 5 zeros. 
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Euler Theorem   
 

θθθ jej =+ sincos  
 

 
 
 
From this results  
 

θθθθθ jesinjcos)sin(j)cos( −=−=−+−  
 
and 
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)ee(
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+=
 

 
 
 
 
 
 

Re
cos θ 

sin θ  

⎜cosθ + j sin θ⎥ =1 
θ  

cos θ+j sin θ=ejθ  

Im 
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2.2 Review of Laplace Transform 
 
The Laplace transform is used to 
- transform systems of differential equations (of real independent variable,   
     time) into sets of algebraic equations (of complex variable, s).  
- obtain easily solutions of the sets of algebraic equations.   
- obtain solutions of the original problems as functions of time, applying   
      the Inverse Laplace transform,  
  
 
Definitions: 
 

)(tf  = a function of independent variable time t, defined as non-zero for 
                 t ≥ 0  i.e.  
                            ƒ(t) = 0 for t<0 
 
F(s) = Laplace transform of ƒ(t);  
 
Laplace transform of transforms f(t) from the t-space into F(s) in the s-

space” 
s = a complex variable 
L = an operator indicating that the quantity that it prefixes is to be 

transformed by the Laplace integral ∫
∞ −

0

st dte)t(f , i.e 
 
           F(s) = L{ƒ(t)} 
 
The Laplace transform of a function ƒ(t) is given by  
 
           F(s) = L{ƒ(t)}= ∫

∞ −

0

st dte)t(f  
 
 L[ƒ(t)] is an operator applied to f(t) that does the following: 
 
- multiplies ƒ(t) with e-st   
-integrates with regard to time t the product between 0 and ∞:  ∫

∞ −

0
)( dtetf st      

    and returns a complex function F(s). 
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Example:  Unit step function u(t) 
 

 
     
 
u(t) = 0 for t < 0 
          1 for t > 0 
           undefined for t = 0, i.e. can take any value between 0 and 1. 
 
 

U(s) = L{u(t)}= 
s
1dte1

0

st =⋅∫
∞ −  

 
U(s) has no finite zero and one zero value pole. 
 
s-plane representation of zeros and poles results in one pole marked x in the 
origin  
 

    
 
 
 
 

Rex  

Im  

  

t

1  

u(t)  
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Example:  Unit ramp function   
 

 
     
 
f(t) = 0 for t ≤ 0 
          t for t > 0 
             
 

F(s) = L{f(t)}= 
20

st

s
1dtet =⋅∫

∞ −  

 
U(s) has no finite zero and two zero value pole xx. 
 
s-plane representation of zeros and poles results in two poles marked xx in 
the origin  
 

    
 
 
 
 
 

Rexx 

Im  

  

t

u(t)  
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Example: Exponential function 
 

 
f(t) = 0 for t ≤ 0 
          e-at for t > 0 
             
 

F(s) = L{f(t)}= 
as

1dtedtee
0

t)as(

0

stat

+
==⋅ ∫∫

∞ +−∞ −−  

 
F(s) has no finite zero and one non-zero pole p = - a . 
 
s-plane representation of zeros and poles results in pole -a marked x  
 

 
 
 
 
 

Re

Im  

  

x 
 
p = - a 

t

f(t)  
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Example: Sinusoidal function 
 
f(t) = 0 for t ≤ 0 
          sin (ωt) for t > 0 
             
where, Euler identity gives 

)ee(
j2

1tsin tjtj ωωω −−=
 

F(s) = L{f(t)}= 
220

stt)j(t)j(

0

st

s
dte)ee(

j2
1dte)tsin(

ω
ωω ωω

+
=⋅+=⋅ ∫∫

∞ −−−∞ −  

 
The poles of F(s) are given by 
 
s2 + ω2=0 
 or  
s2 = - ω2  
 
that gives tow imaginary poles 
 
p1 = j ω   and p2 = - j ω    
and one non-zero pole p = - a . 
 
s-plane representation is 
 

   
 

Re

Im  

  

 p1 = j ω     x 

 p2 = -j ω      x
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Laplace Transform Table 
 
 
See Table 2-1 Laplace Transform Pairs in the textbook. 
 
 
Properties of Laplace Transform 
 
Linearity 
 
For ƒ(t) and g(t)with Laplace transforms 
 
F(s)= L{f(t)} 
G(s)=L{g(t)} 
 
their  linear combination  
 
a f(t) + b g(t)  
 
has the Laplace transform 
 
 a F(s) + b G(s) 
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Time translated function 
 

A f(t) time translated by a time duration “a” is f(t-a) i.e.  
f(t) for t=0 has the same value a the translated function f(t-a) at t=a  
 
f(t) =0 for t<0, can be written as 
f(t-a)1(t-a)  
where unit step function translated by a is given by 
 
1(t-a) =1 for t>a 
            0 for t<a 
 
Given 
 
F(s) =  L{f(t)} 
 
L{f(t - a)}= e-as F(s)       for a ≥ 0 
 
 
Example: Laplace Transform of Pulse Function f(t) of 
amplitude A and duration “a” is 
f(t)=(A/a) 1(t) - (A/a) 1(t-a) 
L{f(t)}= (A/as)(1- exp(- as )) 
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Real Differentiation   
 
Given F(s) = L{f(t)} and initial conditions of f(t), Lapalce 
transforms of derivatives of f(t) are obtained as follows 
 
-first derivative of f(t) 
 

)0(f)s(sF)]t(f
dt
d[ −=L  

 
where ƒ(0) is the initial value of  ƒ(t) evaluated at t = 0. 
-second derivative of f(t) 
 

)0(f)0(sf)s(Fs)]t(f
dt
d[ 2

2

2
&−−=L  

 
-n-th derivative of f(t) 
 

)0(f)0(sf).....0(fs)0(fs)s(Fs)]t(f
dt
d[ )1n()2n(2n1nn

n

n
−−−− −−−−= &L  

 
For zero initial values Laplace transform of the nth derivative of 
ƒ(t) is given by xn F(s). 
A time derivative in the time domain becomes a multiplication by s 
in the Laplace domain. 
 
Example    
  
Given that cos (ωt) =(1/ω) d/dt [sin (ωt)] and  
L{ sin (ωt) }= 22s ω

ω
+

 

L{ cos (ωt) }= L{ d/dt [sin (ωt)] } = s 
22s

1
ω

ω
ω +

=
22s

s
ω+
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Real Integration   
 
 

s
)0(f

s
)s(Fdt)t(fL

1

0

−
∞

+=∫  

 
 
 
where F(s) = L{ƒ(t)} and  ƒ-1(0) = ∫ƒ(t) dt evaluated at t=0. 
 
 
 
 
Final Value Theorem 
 
If F(s) has all poles on the left-hand side of the imaginary axis and 
no more than a single pole in the origin, then 
 

)s(Fslim)t(flim 0st ⋅= →∞→  
 
 
Steady state response of a system in the time domain can be 
obtained from the limit as s goes to zero of the Laplace transform 
of the function multiplied by s. 
 

(See Example 2-2) 
 
 
 
Initial Value Theorem 
 

)s(Fslim)0(f)t(flim s0t ⋅== ∞→→  
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Convolution Integral 
 
If   
F(s) = L{f(t)}  
and  
G(s) = L{g(t)} 
 
then the inverse Laplace transform of their product  
 
H(s) = F(s) · G(s) 
 
denoted ƒ(t)*g(t) and called the convolution of ƒ(t) and g(t) is  
 
h(t) = L-1{H(s)} = L-1{F(s)·G(s)}= ∫ −

t

0
d)(g)t(f τττ    

  
 
  
(See Table 2-2 Properties of Laplace Transforms) 
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2.3 Inverse Laplace Transform 
 
Inverse Laplace transform of the complex function F(s) results in the 
corresponding time function ƒ(t)   
 

∫
∞+

∞−

− >==
jc

jc

st1 0tfordse)s(F
j2

1)t(f)]s(F[L
π

 

 
In  practice,  Laplace transform in not obtained using the above complex 
integration but by using Laplace Transform Pairs table either directly or   by 
processing F(s) until it is transformed in parts found the table table. 
 
 The method for using indirectly the Laplace Transform Pairs table   by 
processing F(s) until it is transformed in parts found the table is the partial 
fraction expansion method. 

 
Partial Fraction Expansion 
 

 
In control systems analysis, F(s) is 
frequently occurs in the form of a ratio of 
polynomials, called also a rational function 
 

 
where A(s) and B(s) are polynomials in s.  In applications, the 
highest power of s in A(s) be greater or equal to the highest power 
of s in B(s).  If not, the numerator B(s) is divided by the 
denominator A(s) in order to produce a polynomial in s plus a 
remainder as the numerator of a new rational function.  
 
 
If F(s) is transformed in a sum of components 
 
 )s(F.....)s(F)s(F)s(F n21 ++=  
 

isiA
n

0i

jsjB
n

0j
)s(A
)s(B)s(F

∑
=

∑
===
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Such that the inverse Laplace transforms of F1(s), F2(s), …, Fn(s) 
are  available from the Laplace Transform Pairs table 
 

)s(f.....)s(f)s(f)}s(F{L.....)}s(F{L)}s(F{L)}s(F{L n21n
1

2
1

1
11 ++=+++= −−−−

 
Partial fraction expansion method is applied differently, depending 
the types of poles:  
a) distinct poles 
b) multiple poles 
c) complex conjugate poles 
 
a) Rational Functions with Distinct Poles 
 
After the calculation of the roots of 
A(s) = j

j

n

1j
sa∑

=

= 0,  

The zeros z1, z2,..,zm  and  

B(s) = i
i

n

1i
sb∑

=

= 0,  

the poles p1, p2,..,pn , where n ≥ m, 
the numerator and denominator polynomials can be factored as 
follows  
 

 
 
 

This form of the can be converted into a sum of simple partial 
fractions that can be found in the Laplace Transform Pairs table 
 

 

)nps)...(2ps)(1ps(
)mzs)..(2zs)(1zs(K

)s(A
)s(B)s(F

+++
+++

==

)nps(
na...)2ps(

2a
)1ps(

1a
)nps)...(2ps)(1ps(
)mzs)..(2zs)(1zs(K

)s(A
)s(B)s(F

+
++

+
+

+
=

+++
+++

==
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What would be required is to find the constant ak, called residues, 
for k=1,2,…,n, corresponding to the n-poles – pk,  such that the 
above right hand side sum of partial function is equal to F(s). 
 ak is obtained as follows 
 
 

ka
kps)nps(

na)kps()kps(
ka

)kps(...)2ps(
2a

)kps()1ps(
1a

)kps(

kps)s(A
)s(B)kps(

=
−=

+
++

+
+++

+
++

+
+

=
−=

+

⎥
⎥

⎦

⎤

⎢
⎢

⎣

⎡

⎥
⎦

⎤
⎢
⎣

⎡

 
 
i.e ak is obtained from, 
 
 

kpss)s(A
)s(B)kps(ka

−=
+= ⎥

⎦

⎤
⎢
⎣

⎡  

 
 
b) Functions with Multiple Poles 
 

 
 
  
 
 

 
has poles order of multiplicity higher or equal to 1, N1 for p1, N2 
for p2, …., Nn for pn,  
 
 
 

nN)nps...(2N
)2ps(1N

)1ps(

m

0j
jsjB

)s(A
)s(B)s(F

+++

∑
===
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This can be transformed into a sum of simple partial fractions,   
which would require to find the constants aNk, corresponding to the 
n-poles – pk, such that the above right hand side sum of partial 
function is equal to F(s). 
 aNk is obtained as shown in the example from the textbook, page 
35-36 in  
 
(Partial-Fraction Expansion when F(s) Involves Multiple Poles) 
  
c) Complex conjugate poles 
 
If p1 and p2 are complex conjugates poles, then the residues a1 and 
a2 are also complex conjugates such that only one needs to be 
evaluated. 
From Laplace Transform Pairs table 
 

 
tkp

eka
)kps(

ka1L
−

=
+

−
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
 

[ ] tnpena...
t2p

e2a
t1p

e1a)s(F1L)t(f −++
−

+
−

=−=                                 for t ≥ 0 
 

(See Examples 2-4 to 2-5,  A-2-14) 

)nps(
na...

2N
)2ps(
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)1ps(
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...11N

)1ps(
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1N
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Partial-Fraction Expansion with MATLAB 

 
 
Consider the following function B(s)/A(s) 

 
 
 
 
 

MATLAB program 
 
num= [Bn Bn-1…B0] 
den=[Am Am-1…A0] 
 
The command for calculating ak 
 
[r,p,k] = residue(num,den) 
 
The residues ak and the poles pk, give the k-th a partial-fraction 

)kps(
ka

+ for all k = 1, 2,...,n 

(See Examples 2-6 and 2-7) 
 
 

 

den
num

isiA
n

0i

jsjB
n

0j
)s(A
)s(B)s(F =

∑
=

∑
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2.4 Solving Linear Time Invariant-Ordinary    
       Differential Equations (LTI-ODE) 

 
 
Laplace Transform LTI-ODE  
 

(See Examples 2-8 and 2-9) 
 
 
Example 
 
a) This mass-damper-spring (m-b-k) system is subject to a applied 
force f(t) and has zero initial conditions. Calculate X(s).  
 

 
 
Newton second law gives 
 

)t(fkxxbxm =++ &&&  
 
Laplace Transform of this equation, for zero initial conditions, 
gives 
 
ms2X(s)+bsX(s)+kX(s)=F(s) 
 
or 
 

 
m 

 b 

 k 
 f(t) 

 x(t) 
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(ms2+bs+k)X(s)=F(s) 
 
Solving the above algebraic equation in ”s” 
  
X(s)=F(s) / (ms2+bs+k) 
 
Inverse Laplace transform for unit impulse input force  
F(s)=1 
gives  
X(s)=1 / (ms2+bs+k) 
or 
 
X(s)=(1 / m)/( s2+sb/m+k/m) 
 
b) Obtain x(t) for  b=0   
 
X(s)=(1 /m)/( s2+ k/m)= (1/k)(k/m)/( s2+ k/m) 
Laplace Transform Pairs table gives  
 

tsin
)22s(

1L ω=
ω+

−
⎥
⎥

⎦

⎤

⎢
⎢

⎣

⎡ ω  

Denote 
ω2=k/m 
such that X(s) can be written as follows  
X(s)=(1 /m)/( s2+ k/m)= (1/k)( k/m)/( s2+ k/m)=  
         (1/k)(√k/m) (√k/m)/( s2+ k/m)= (1/k)(√k/m) (ω)/( s2+ ω2) 
Consequently 
x(t)= (1/k)(√k/m) sin ω t= (1/√km) sin (√k/m)t  
 
 

(See Examples A-2-2 to A-2- 17) 
 
 


