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Chapter 3 MATHEMATICAL MODELING OF 
DYNAMIC SYSTEMS 

 
3.1 System Modeling 

 
 
 
   
 

Mathematical Modeling 
 
 
In designing control systems we must be able to model engineered system 
dynamics.   
 
The model of a dynamic system is a set of equations (differential equations) 
that represents the dynamics of the system using physics laws. 
 
The model permits to study system transients and steady state performance. 
  
 

Model complexity 
 
 
• As model becomes more detailed it also can become more accurate. 
 
• Model accuracy needed for control system design is normally simpler 

than the model used for system simulation. 
 
• Simpler models: 

-ignore some physical phenomena,    
-approximate linearly nonlinear characteristics 
-use lumped parameters approximation of distributed parameters 
systems. 

 
• For the design of a control system: 

-an initial simplified model is built for conceptual design  
-a more model is used for controller design and parameters 
determination 
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Linear Systems 
 
 

 
For linear systems the principle of superposition is valid, and the response to 
a complex input can be calculated by summing up the responses to its 
components. 
 
 
 
Linear Time Invariant  (LTI ) Systems versus Linear Time Varying Systems 
 
• Linear Time Invariant (LTI ) Systems = systems: 

- represented by lumped components,- 
- described by linear differential equations  
- parameters of the equations are time invariant. 

 
• Systems with parameters that vary in time are called linear time varying 

systems. 
 
 
Examples:  a car in motion or a rocket in flight have weight that diminishes  
                    as the fuel is consumed. 
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3.2 Transfer Function 
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for zero initial conditions. 
 

 
 
 
 
 
 
 
The transfer function of a system represents the link between the input to the 
system to the output of the system. 
 
The transfer function of a system G(s) is a complex function that describes 
system dynamics in s-domains opposed t  the differential equations that 
describe system dynamics in time domain. 
 
The transfer function is independent of the input to the system and does not 
provide any information concerning the internal structure of the system. 
Same transfer function can represent different systems. 
 
The transfer function permits to calculate the output or response for various 
inputs. 
 
The transfer function can be calculated analytically starting from the physics 
equations or can be determined experimentally by measuring the output to 
various known inputs to the system.   
 
 
 

Input 
u(s) 
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y(s) Transfer Function=G(s)
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Example: Car suspension model  
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Laplace transform for zero initial conditions gives 
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Impulse Response  

 
The Laplace transform of an impulse function δ(t) is given by  
 

1)}t({ =δL  
 
 
The output of a system due to an impulse input u(s)= δ(s) = 1 is 

 
 
 

 
The impulse response of a system is identical to the transfer function of that 
system. 

 
 

The inverse Laplace transform of the impulse response G(s) 
  
 

)t(g)}s(G{1 =−L  
 
 
 
The transfer function, that contains complete information about the dynamic 

characteristics of a system, can be obtained by applying an impulse input 
u(t)= δ(t) and measuring system response y(t) which in this case is identical 

to g(t). The transfer function will then be G(s)=L{g(t)}

)s(G)s(u)s(G)s(y =⋅=
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3.3 Block Diagrams 
 
Block diagrams are a graphical representation of the system model. 
 
The blocks represent physical or functional components of the system. 
 
Each block has inscribed the transfer function of that component the relate 
the output of the component to its input. 
 
 
Block Diagrams 
 
Block diagrams consist of  
 

1. blocks 
2. summation junctions 
3. paths 
4. branching points 

 
 
1. Block 
 
Example: car suspension system 
 
 

 
 
 
Blocks represent physical or functional components in the system.  In the 
block is inscribed the transfer function of that component of the system  
 
 
 
 
 
 
 

bs+k 
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2. Summation Junction 
 
 

  
 
 
A summing junction results in the addition or subtraction of input signals for 
a single output. 
 
3. Path 
 

 
Signal X(s) flows along the directed path  
 
 
4. Branching Point 
 
 
 
 
 
 
 
At the branching point a signal splits into two signals of the same value.  
 

      + A 
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       -C    
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                         X(s) 
 
X(s) 
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3.4 Block Diagram of a Closed Loop System 
 
In a closed loop control system, also called feedback control system, the 
output variable y(s) is measured as ym(s), subtracted from its desired value  
yd(s) to calculate the error  e(s)= yd(s) - ym(s)   
 

   
G(s) is feed forward transfer function (of the controller, actuator and the  
                   system) 

G(s) = y(s) / e(s) 
 

H(s) is feedback transfer function (of the sensor) 
H(s) = ym(s) / y(s) 

 
G(s) H(s) = open loop transfer function  
 

G(s) H(s) = [ym(s) / y(s)][ y(s) / e(s)]= ym(s) / e(s) 
yd(s) / y(s) is closed loop transfer function  obtained from the above 
equations by eliminating e(s) and ym(s)  
 

y(s) = G(s) e(s) = G(s) [yd(s) - ym(s)]= G(s) [yd(s) – H(s)y (s)] 
y(s) + G(s) H(s) y(s) =G(s) yd(s) 
y(s)/yd(s)= G(s) / [1+ G(s) H(s)] 

 
This equation gives the single block equivalent of the above closed loop 
system 
 

 
 
 
 

yd(s) y(s) )s(H)s(G1
)s(G

+

yd(s)    
          +  
           _ 
 
     

G(s) 

H(s)          
y m(s)         

y 
         
e (s)= yd(s)- ym(s) 
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The transfer function represents the closed loop system dynamics with 
complex functions. 
 
The output y(s) is given by 
 

y(s)= G(s) / [1+ G(s) H(s)] yd(s) 
 
 
and depends on the closed loop transfer function and the desired value of the 
output yd(s), called also the input (to the closed loop system).  
 
The following positive feedback block diagram 

 
 
is equivalent to a negative feedback one if H(s) is replaced by –H(s) 
 

 
 
which is equivalent to the block  
 
 

 
 
 
 

yd(s) y(s) 
)s(H)s(G1

)s(G
−
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          +  
              
          - 
 
     

G(s) 
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y (s)    
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          + 
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Closed loop Control System Advantage 
 

Ideally 
 

y(s)/yd(s)→ 1 
i.e it is required that  

 
G(s) / [1+ G(s) H(s)] → 1 

 
or  

1 / [1/ G(s)+ H(s)] → 1 
  
which is achieved for a very high value of G(s) 
 

G(s) → ∞ 
 

G(s) represents the controller, actuator and the system and G(s) → ∞ and the 
high feed forward gain can be achieved by a very high value of the 
controller transfer function. In the stability study it will be seen that there is 
a limit to such high value due to stability constraints.  
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Error  
 

Error of a closed loop control system can be obtained from:  
e(s)=yd(s)-ym(s)= yd(s)-H(s) y (s)=yd(s){1- H(s)y(s)/yd(s)}=  
                             yd(s) {1- H(s)G(s) / [1+ G(s) H(s)] }= 
                              {1- H(s)G(s) / [1+ G(s) H(s)] }yd(s)= 
                                {1 / [1+ G(s) H(s)] }yd(s)  
                 

 
  
 

 
Steady State Error   

 
Final value theorem gives the steady state error of a system e(∞), i.e., error 
when t ∞ 
 
By taking the limit for s→0 of   
e(∞)=limt→∞ e(t)= lims→0{se(s)}= lims→0{1 / [1+ G(s) H(s)] }yd(s)= 
{1 / [1+ G(0) H(0)] }yd(0) 
 

The Components of Closed Loop Control System 
 
-The system to be controlled S (s) 
 
-The transducer (sensor) H(s) to measure the outputs y(s) and feed them 
back as ym(s) 
 
-the comparator to calculate the error e(s) between the desired value of the 
output yd(s) and output measurement ym(s) 
 
-the controller C(s) that uses this error signal e\(s) and generates the 
command uc (s) to the system 
 
-the actuator M(s) 
 
such that  

yd(s) e(s)1 
1+G(s)H(s)
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G(s) = C(s) M(s) S(s) 
 

 
 
 

Perturbations   
 
 

Perturbations p (s) to a control system generally act on the system G(s), and 
occur as an additional power input that adds to the power input u(s) to the 
system.   
 

 
 
 
Superposition principle is applied for linear systems and consider each input 
independently, and the outputs corresponding to each input alone can be 
added to give the total output.   
The principle of superposition is applied as follows  
 
-the output of the system y1 (s) is calculated as a result of the input command 
yd(s)  for p(s)=0. 

yd(s)    
          +  
           _ 

S(s) 

H(s)          
y m(s)         

C(s) M(s) 

        
y (s)         

u (s)  
       
uc

 

        
e (s)  

       power supply    
        p(s)
        
  +               
 + 
 
     

yd(s)    
          +  
           _ 

S(s) 

H(s)          
y m(s)         

C(s) M(s) 

        
y (s)         

u (s)  
       
uc

 

        
e (s)  

       power supply    

         
ACTUATOR     

         
SYSTEM  

         
CONTROLLER      
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)s(dy)s(H)s(G1
)s(G)s(y1 +

=  

  
-the output of the system y2 (s) is calculated as a result of the p(s) for yd(s)=0. 
y2 (s)=S(s){C(s)/[1+C(s)M(s)S(s)H(s)]}p(s) 
or 

)s(p)s(H)s(G1
)s(C)s(y2 +

=  

- add the two outputs y(s)= y1 (s)+ y2(s) 
 
 

)s(H)s(G1
)s(p)s(C)s(dy)s(G

)s(p)s(H)s(G1
)s(C)s(dy)s(H)s(G1

)s(G)s(y)s(y)s(y 21 +
+

=
+

+
+

=+=

 
The effect of the perturbation p(s) is cancelled for G(s)H(s)>>1 and M(s) 
>>1 . 
For G(s)H(s)>>1 
1+G(s)H(s)≈ G(s)H(s) 
and 
C(s)/[1+G(s)H(s)]= C(s)/[1+C(s)M(s)S(s)H(s)] ≈ C(s)/[C(s)M(s)S(s)H(s)] ≈ 
1/[ M(s)S(s)H(s)]  
such that for  
 

)s(p)s(H)s(S)s(M)s(dy)s(H)s(y)s(y)s(y 11
21 +=+=  

For M(s) >>1, 1/[ M(s)S(s)H(s)]→0 
and 
 

)s(dy)s(H)s(y)s(y)s(y 1
21 =+=  

i.e. the output y(s) is not affected by p(s) and G(s). 
H(s)=1 will result in the ideal 
y(s)= yd(s) 
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 Block Diagram Reduction 
 

Block diagram for actual systems can contain a large number of blocks 
and block diagram reduction is required to reduce it to a single equivalent 
block, using the following two rules: 

1. The product of the transfer functions in the feedforward direction 
should remain the same 

2. The product of the transfer functions around the loop should remain 
the same 

 
 
Example: 
 

 
 
The top, negative feedback loop cannot be reduced unless the summing 
point is moved ahead G1(s).  

 
We will determine the new, unknown, feedback transfer function a(s) using 
the above two rules.  

1. The first rule is actually satisfied, as both block diagrams have the 
same product of the transfer functions in the feedforward direction 

     G1(s) G2(s) G3(s) 

+      
        
  + 
     

G3(s) 

H1(s) 

G1(s) G2(s)

  -  
 
+ 
 

a(s) 

+      
        
  + 
     

G3(s) 

H1(s) 

G1(s) G2(s)

  -  
 
+ 
 

H2(s)
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2. The product of the transfer functions around the loop for the initial 

block diagram is 
 
G1(s) [G2(s) G3(s)/(1+ G2(s)G3(s) H2(s)]=  
G1(s) G2(s) G3(s)/[(1+ G2(s)G3(s) H2(s)] 
and for the modified block diagram 
G1(s) G2(s) G3(s)/(1+ G1(s)G2(s)G3(s) a(s)] 
 
In order to be the same, given the same numerators, the denominators 
have to be equal 
 1+ G2(s)G3(s) H2(s)= 1+ G1(s)G2(s)G3(s) a(s) 

or 
G2(s)G3(s) H2(s)= G1(s)G2(s)G3(s) a(s) 
or 
H2(s)= G1(s) a(s) 
which gives the solution for the unknown new feedback transfer function 
a(s) = H2(s)/G1(s)  
 
Previous block diagram is equivalent to 
 

 
 
as the switch of the summing points satisfy the two rules. 
Now the bottom positive feedback loop can be reduced to 
G1(s)G2(s)/[1-G1(s)G2(s)H1(s)] 
such that 
 

+      
        
  + 
     

G3(s) 

H1(s) 

G1(s) G2(s)
  -  
 
+ 
 

H2(s)/G1(s) 
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and, final reduction gives the final transfer function 
 

G1(s)G2(s) G3(s)/[1-G1(s)G2(s)H1(s)]/{1+ G1(s)G2(s) G3(s)/[1-
G1(s)G2(s)H1(s) H2(s)/G1(s)] 

 
(See Example 3-2 and A-3-1 to A-3-5) 

  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

G3(s) G1(s)G2(s)/[1-G1(s)G2(s)H1(s)] 
  -  
 
+ 
 

H2(s)/G1(s) 
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Controllers   
 
Controllers are the part of the overall feedback control system that are the 
main focus of control engineering. 

 
or 
 

 
 
 

Classifications of Controllers 
By the type of implementation:  
-pneumatic controller  
-hydraulic controller  
-analog electronic controllers 
-digital controllers 
Modern implementation is as digital controllers. By control law: 
 

On-off,  
Proportional, P-control 
PD-control    
PID-control   

In Control I and II only the last three are studied. 

yd(s)    
          +  
           _ 

S(s) 

H(s)          
y m(s)         

C(s) M(s) 

        
y (s)         

u (s)  
         
uc(s)    

        
e (s)  

       power supply    
        p(s)
        
  +               
 + 
 
     

desired 
output       
          +        

S(s) 

H(s)          
output 
measurement

C(s) M(s) 

         
output 
of the 
system   

         
input   

controller
output                

error    
         
ACTUATOR  

         
SYSTEM           

CONTROLLER   

       power supply    
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P-control 
 
 
The transfer function is 
 

pk)s(e
)s(cu =  

 
where kp is the proportional gain 

 
The block diagram is 
 

 
The P-controller corresponds to an operational amplifier with an adjustable 
gain kp. 
 

PD Control   
 
 
The transfer function is 
 

)sdT1(pksdkpk)s(e
)s(cu +=+=   

 
where kd is the derivative gain and Td = kd / kp 

 
The block diagram is 
 

 

e(s) uc(s)
 kp + kp s

e(s) uc(s)
 kp 
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PID Control 
 
 
The PDI controller transfer function of is 
 

)
siT

1sdT1(pk
s
ik

sdkpk)s(e
)s(cu ++=++=   

 
where ki is the integral gain and 1/Ti = ki / kp 

 
The block diagram is 
 

 
PID controllers are frequently used in applications. 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

e(s) uc(s)
 kp + kp s+ki/s
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3.5 State Space Representation 
 
 
State space based control approaches are developed in Russia in 1960s. 
 

This is called Modern Control Theory or State space Control Theory  or 
Time Domain Approach (as opposed to Conventional Control Theory of 
Classic Control Theory or Frequency Domain Approach 

 
The major limitation of the conventional frequency domain models is the 
requirement that the system be linear and Single Input Single Output (SISO). 
 
  
 
Definitions 
 
State Variables:  are the minimum set of variables that uniquely define the 
state of a dynamic system at any instant of time. 
 
States:  are the values of the set of state variables.  For known current state 
values and of the input   the state of the system in the future time  can be 
calculated. 
 
State Vector:  is the vector of state variables. 
 
State space:  is the hyperspace in which the state of the system takes values. 
 
 
State Space Model 
consists of: 
 
a) State equations for a nonlinear system 
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)t,ku,...,2u,1u,nx,...,2x,1x(nfnx
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b) output equations for a nonlinear system 

)t,ku,...,2u,1u,nx,...,2x,1x(mgmy
......................................................................

)t,ku,...,2u,1u,nx,...,2x,1x(2g2y
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=

=
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Matrix state space model is defined for 
-state vector [n·1] 
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⎡
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-output vector [m·1] 
 

⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

=

)t(y
.
.

)t(y
)t(y

)t(y

m

2

1

 

 
 



 3-22

-input vector [k·1] 
 

⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

=

)t(u
.
.
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)t(u

)t(u

k
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- right hand side of state equation 

⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡
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-right hand side of output equation 
 
 

⎥
⎥
⎥
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⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
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⎣

⎡
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.
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)t,ku,...,2u,1u,nx,...,2x,1x(1f

)t,u,x(g  

 
 
the above state and output equations can be written in a compact form as 
matrix equations 
 

)t,,()t(
)t,,()t(

uxgy
uxfx

=
=&
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Linearization of Nonlinear Equations 
 
The operation of a system for a short time duration is around an operating 
point, with small variations about the equilibrium point. 
In this case, is suitable to model the operation by approximations of the 
nonlinear system using local linear approximations. 
Such a linearized LTI model  is used for controllers design. 
 
Linearizing state and output nonlinear equations about a given value of the 
state vector, gives Linear Time Variant equations  
 

)t()t(D)t()t(C)t(
)t()t(B)t()t(A)t(

uxy
uxx

+=
+=&

 

 
A(t) is state matrix 
B(t) is the input matrix 
C(t) is the output matrix 
D(t) is the direct transmission matrix. 
 
A Linear Time Invariant (LTI) system is given by 
 

)t(D)t(C)t(
)t(B)t(A)t(

uxy
uxx

+=
+=&

 

 
where A, B, C, and D are matrices of constant values. 
 
Example: A mass-damper-spring vertical M-B-K system is subject to a 
force f(t) 
 
 
 
 
 
 
 
 
 
 
The free body diagram is 

M 

f(t) 

Y(t) 

B K 
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The equation of motion is given by Newton second law 
 

)t(f)t(KY
dt

)t(dYB
2dt

)t(Y2dM +−−=  

 
Inertia force is M d2Y(t)/dt2 and  gives the following free body diagram 
 
 
 
 
 
 
 
 
 
 
D’Alembert principle gives the force balance equation 
 

0)t(f)t(KY
dt

)t(dYB
2dt

)t(Y2dM =−++  

 
Let us define the following set of state variables x1(t) and x2(t) 
x1(t)=Y(t) 
x2(t)=dY(t)/dt= dx1(t)/dt 
and 
dx2(t) /dt= d2Y(t)/dt2 =(1/M)[-B dY(t)/dt-KY(t)+f(t)] 
The above second order equation of motion can be replaced by two first 
order state equations using state variables x1(t) and x2(t) and input variable 
u(t)=f(t) 

M 
f(t) 

Y(t) 

BdY(t)\dt KY(t) 

M 
f(t) 

Y(t) 

BdY(t)\dt KY(t) 

M d2Y(t)/dt2 
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dx1(t)/dt= x2(t)  
dx2(t) /dt= -(K/M) x1(t) - (B/M) x2(t) + (1/M) u(t)] 
 
and system output equation   
y(t) =x1(t) 
 
 in case that the output is the position (or y(t) =x2(t) if the output is the 
velocity x2(t)=dY(t)/dt of the mass M) 
Matrix form of state dynamics and output equations is 
 

[ ]
⎥
⎥

⎦

⎤

⎢
⎢

⎣

⎡

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡

⎥
⎥

⎦

⎤

⎢
⎢

⎣

⎡

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡

⎥
⎥

⎦

⎤

⎢
⎢

⎣

⎡

=

+=

)t(2x
)t(1x

01y(t)

)t(u
M/1
0

)t(2x
)t(1x

B/M-K/M-
10

 (t)2x
(t)1x

&
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or 
 

)t(D)t(C)t(
)t(B)t(A)t(

uxy
uxx

+=
+=&

 

 
where 
 

⎥
⎥
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)t(1x
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⎥
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⎢
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[ ]01C=  
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Relationship between Transfer Functions and State-Space Equations 
 
 
System transfer function  

)s(u
)s(y)s(G =  

  
has to be obtained from the matrix form of  state and output equations by 
elimination the other variable, the vector x(s).  
This requires Laplace transform  of these matrix equations for zero initial 
conditions 
 

)s(D)s(C)s(
)s(B)s(A)s(s

uxy
uxx

+=
+=  

or 

)s(D)s(C)s(
)s(B)s()AsI(

uxy
ux

+=
=−  

where I is a 2 by 2 identity matrix. 
 
The elimination is carried out by solving first equation for x(s) 
 

)s(B1)AsI()s( ux −−=  

and replacing x(s) in the second equation 
)s(D)s(B1)AsI(C)s( uuy +−−=  

or 
)s(]DB1)AsI(C[)s( uy +−−=  

 
 
 For single input ,  )s(y)s( =y and single output )s(u)s( =u  
such that 

)s(u]DB1)AsI(C[)s(y +−−=  
This equation gives the relationship between the transfer function and the 
matrices A, B, C, and D of the state space representation 
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]DB1)AsI(C[
)s(u
)s(y)s(G +−−==  

Given that the inverse of the matrix sI-A is given by the matrix of adjoints 
||sI-A|| divided by the determinant |sI-A| 
(sI-A)-1= ||sI-A||/|sI-A| 
Assuming D=0 
 
G(s) =C||sI-A||B/|sI-A| 
Such that the poles of the transfer function G(s) are given by 
|sI-A|=0  
that is actually the equation that permits the calculation of the vector of 
eigenvalues λ of the square matrix A 
|λ I-A|=0  
This indicates that the characteristic equation of the system is given by  
(sI-A).  That means that the eigenvalues of A is identical to the poles of G(s) 
in the Laplace domain. 
The poles of the transfer function G(s) can, consequently be calculated as 
eigenvalues of the matrix A. 
 
Example: Consider the M-B-K system analysed before.   
State space and output equations for the system were given by 
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To obtain the transfer function from the state space equations see 
 

(See Example 3-4 from Ogata textbook) 
The result is 
G(s)= 1/( Ms2+bs+k) 
The poles of G(s) are given by  
Ms2+Bs+K=0 
Which is the determinant of the matrix A, 
|A|=0
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State Space representation of nth-order systems of Linear Differential 
Equations  
 
 

a) The case when the forcing function does not involve  
        derivative terms 

 
 

b) When the input involves derivative terms in the forcing 
function 

 
(See Ch. 3-5 from   Ogata textbook) 

 
(See Example 3-5 in Ogata textbook) 

 
 
  
 
 


