2. <u>Transformation de Laplace</u>

2.1 Revue de la Transformation Laplace

Pierre Simon Marquis de **Laplace** (1749-1827) – astronome, mathématicien et politicien, Ministre français de la police pour 6 semaines sous Napoléon, President de l'Academie Française sous Louis XVI.

Variable Complexe
$$s = σ + jω$$

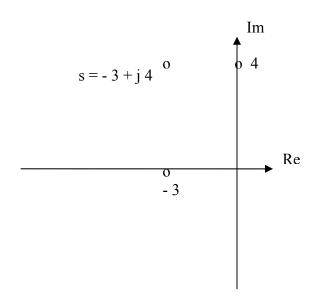
σ et ω sont réels

Representation graphique des nombres complexes

dans le plan complexe

(Re = rèal, Im = imaginaire) ou
$$(\sigma, \omega)$$

Exemple, $s = \sigma + j \omega = -3 + j 4$



Fonction Complexe

Fonctions de nombres complexes sont des fonctions complexes. Exemple

$$G(s) = G_x + j G_y$$

G_x G_y sont réels

L'amplitude de G(s) est

$$|G(s)| = \sqrt{(G_x^2 + G_y^2)}$$

L'angle θ de G(s) est

$$\theta = \tan^{-1} \left(G_{y} / G_{x} \right)$$

L'angle a des valeurs positives dans le sens trigonométrique positive.

La fonction conjugué de la fonction G(s) est

$$G(s)^* = G_X - j G_V$$

Pôles et Zéros

pôles = values de s pour lesquelles $G(s) \rightarrow \infty$

 $\underline{z\acute{e}ros}$ = values de s pour lesquelles $G(s) \rightarrow 0$

Exemple

La function complexe

$$G(s) = \frac{K(s+1)(s+15)}{s(s+2)(s+5)(s+25)^2}$$

a

- zéros s = -1, -15
- trios pôles uniques s = 0, -2, -5,
- un pôles double (ordre de multiplicité 2) s = -25.

Note that $G(s) \rightarrow 0$ as $s \rightarrow \infty$, c.à.d $s \rightarrow \infty$ est un zéro infinie

s = -2, -10 sont des zéros finis.

Exemple

La fonction complexe G(s) est équivalente à

$$G(s) = \frac{Ks^{2}(1+1/s)(1+15/s)}{s^{5}(1+2/s)(1+5/s)(1+25/s)} = \frac{K}{s^{3}} \cdot \frac{(1+1/s)(1+15/s)}{(1+2/s)(1+5/s)(1+25/s)}$$

Pour des grandes valeurs de s

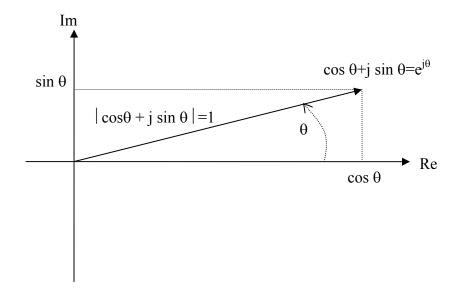
$$\lim_{s\to\infty} G(s) \approx \frac{K}{s^3}$$

c.à.d G(s) a un zéro triple à $s \to \infty$.

Si les zéros infinies sont inclus, G(s) a le même nombre de pôles et zéros, 5 pôles et 5 zéros.

Theoreme d'Euler

$$\cos\theta + j\sin\theta = e^{j\theta}$$



$$\cos(-\theta) + j\sin(-\theta) = \cos\theta - j\sin\theta = e^{-j\theta}$$

et

$$\cos\theta = \frac{1}{2}(e^{j\theta} + e^{-j\theta})$$

$$\sin \theta = \frac{1}{2j} (e^{j\theta} - e^{-j\theta})$$

2.2 Revue de la transformation Laplace

La transformation Laplace

- transforme les systèmes des équations différentielles (de variable indépendante, temps) en systèmes des équations algébriques (de variable complexe, s).
- obtienne facilement les solutions des systèmes des équations algébriques.
- systèmes des équations différentielles comme fonctions of time, en utilisant la **transformé Laplace inverse**

Definitions:

f(t) = une fonction de variable indépendante de temps t, définie pour

$$t \ge 0$$
 c.à.d
 $f(t) = 0$ pour $t < 0$

F(s) = transformé Laplace de f(t);

La transformé Laplace de f(t) de l'espace - t en F(s) dans l'espace - s

s = variable complexe

L = Le symbole de la transformé intégrale Laplace $\int_0^\infty f(t)e^{-st}dt$, c.à.d

$$F(s) = L\{f(t)\}\$$

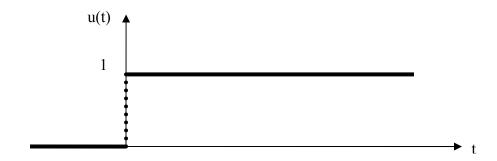
La transformation Laplace F(s) de f(t)

$$F(s) = L\{f(t)\} = \int_0^\infty f(t)e^{-st}dt$$

L[f(t)] appliqué à f(t):

- fait la multiplication de f(t) avec e^{-st}
- -fait l'intégration par rapport à t de 0 à ∞ : $\int_0^\infty f(t)e^{-st}dt$ pour obtenir la fonction complexe F(s)

Exemple: fonction marche unitaire u(t)



$$u(t) = 0 \text{ pour } t < 0$$

$$1 \text{ pour } t > 0$$

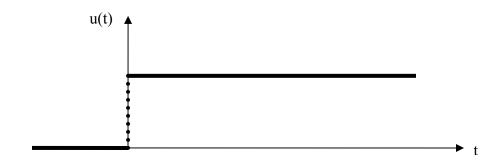
Non – défini t = 0, c.à.d peut avoir n'importe quelle valeur entre 0 et 1.

$$U(s) = L\{u(t)\} = \int_0^\infty 1 \cdot e^{-st} dt = \frac{1}{s}$$

U(s) n'a pas de zéro et un seul pôle de valeur 0.

La représentation dans le plan s des zéros et pôles contienne un seul pôle noté x dans l'origine

Exemple: fonction saute unité (ou fonction d'Heaviside ou échelon unitaire)



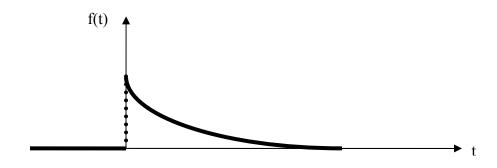
$$f(t) = 0 \quad pour \quad t \le 0$$
$$t \quad pour \quad t > 0$$

$$F(s) = L\{f(t)\} = \int_0^\infty t \cdot e^{-st} dt = \frac{1}{s^2}$$

U(s) n'a pas de zéro fini et deux pôles de valeur 0 .

La représentation dans le plan s des zéros et pôles contienne deux pôles noté xx dans l'origine

Exemple: fonction exponentielle



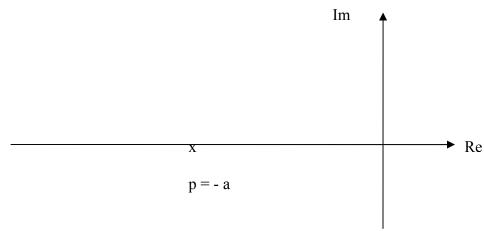
$$f(t) = 0 \quad \text{pour } t \le 0$$

$$e^{-at} \quad \text{pour } t > 0$$

$$F(s) = L\{f(t)\} = \int_0^\infty e^{-at} \cdot e^{-st} dt = \int_0^\infty e^{-(s+a)t} dt = \frac{1}{s+a}$$

F(s) n'a pas de zéro fini et un seul pôle non - zéro de valeur p= - a .

La représentation dans le plan s des zéros et pôles contienne un pôle noté x à p = -a



Exemple: fonction sinusoïdale

$$f(t) = 0$$
 pour $t \le 0$
 $\sin(\omega t)$ pour $t > 0$

La théorème d'Euler donne

$$\sin \omega t = \frac{1}{2j} (e^{j\omega t} - e^{-j\omega t})$$

ainsi que

$$F(s) = L\{f(t)\} = \int_{0}^{\infty} \sin(\omega t) \cdot e^{-st} dt = \frac{1}{2i} \int_{0}^{\infty} (e^{-(j\omega)t} + e^{-(j\omega)t}) \cdot e^{-st} dt = \frac{\omega}{s^{2} + \omega^{2}}$$

Les pôles de F(s) sont donnés par

$$s^2 + \omega^2 = 0$$

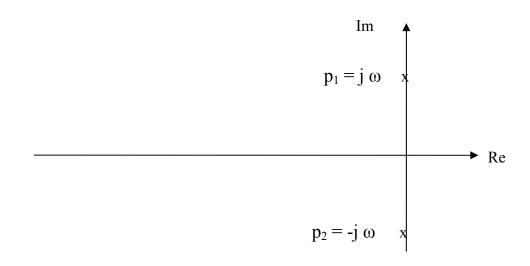
c.à.d

$$s^2 = -\omega^2$$

Ça donne les pôles

$$p_1 = j \omega$$
 and $p_2 = -j \omega$

La représentation dans le plan s des zéros et pôles contienne deux pôles imaginaires



Laplace Transform Table

Voir Table 2-1 Laplace Transform Pairs dans le livre.

Les propriétés de la Transformé Laplace

<u>Linearité</u>

Pour f(t) et g(t) avec les transformés Laplace

$$F(s)=L\{f(t)\}$$

$$G(s)=L\{g(t)\}$$

avec la combinaison linaire

$$a \cdot f(t) + b \cdot g(t)$$

et sa transformé Laplace

$$a \cdot F(s) + b \cdot G(s)$$

Translation dans le temps

La translation dans le temps de f(t) par une durée de "a" f(t-a) c.à.d f(t) pour t=0 a la même valeur que f(t-a) pour t=a

$$f(t) = 0$$
 pour $t < 0$,
ou
 $f(t-a)1(t-a)$

La translation du saut unité par a donne

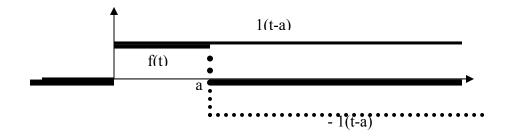
$$1(t-a) = 1 \text{ for } t > a$$

$$0 \text{ for } t < a$$

Pour $F(s) = L\{f(t)\}$, la transformé Laplace de la translation dans le temps de f(t) par une durée de "a", f(t-a), est

$$L\{f(t-a)\}=e^{-as} F(s)$$
 pour $a \ge 0$

Exemple: Une impulsion f(t) de durée a et amplitude A=1 f(t) = 0 pour t < 0 et t > a et f(t) = 1 pour 0 < t < a ou f(t) = 1(t) - 1(t-a) avec la transformé Laplace $L\{f(t)\}=(1/s)(1-\exp(-as))$



Transformée de dérivées

Pour $F(s) = L\{f(t)\}\$ et conditions initiales f(t), f(0) etc., les transformées de dérivées de f(t) sont

-première dérivée de f(t)

$$L[\frac{d}{dt}f(t)] = sF(s) - f(0)$$

ou f(0) est la valeur initiale de f(t) pour t = 0.

- deuxième dérivée de f(t)

$$L[\frac{d^{2}}{dt^{2}}f(t)] = s^{2}F(s) - sf(0) - \dot{f}(0)$$

- n-ième dérivée de f(t)

$$L[\frac{d^{n}}{dt^{n}}f(t)] = s^{n}F(s) - s^{n-1}f(0) - s^{n-2}\dot{f}(0)..... - sf^{(n-2)}(0) - f^{(n-1)}(0)$$

Pour conditions initiales zéro, la transformé Laplace de n-ième dérivée de f(t) est x^n F(s).

La dérivée en temps de f(t) devienne une par *s* dans le domaine Laplace.

Exemple

Pour cos (ωt) =(1/ ω) d/dt [sin (ωt)] et

$$L\{\sin(\omega t)\} = \frac{\omega}{s^2 + \omega^2}$$

L{ cos (ωt)} = L{ d/dt [sin (ωt)]} = s
$$\frac{1}{\omega} \frac{\omega}{s^2 + \omega^2} = \frac{s}{s^2 + \omega^2}$$

Integration

$$L \int_0^{\infty} f(t) dt = \frac{F(s)}{s} + \frac{f^{-1}(0)}{s}$$

ou
$$F(s) = L\{f(t)\}\$$
et $f^{-1}(0) = \int f(t) \ dt \$ pour $t=0$.

Théorème de la valeur finale

Si F(s) a tous les pôles du coté gauche de l'axe imaginaire et pas plus qu'un seul pôle dans l'origine, alors

$$\lim_{t\to\infty} f(t) = \lim_{s\to 0} s \cdot F(s)$$

Le régime stationnaire d'un système dans le domaine de temps peur être obtenu avec cette équation.

Théorème de la valeur initiale

$$f(0) = \lim_{t\to 0} f(t) = f(0) = \lim_{s\to \infty} s \cdot F(s)$$

Produit de convolution en temps

Si

$$F(s) = L\{f(t)\}\$$

$$G(s) = L\{g(t)\}\$$

la transformé Laplace de leur produit est

$$H(s) = F(s) \cdot G(s)$$

f(t)*g(t) désigne la convolution de f(t) et g(t) en temps

$$h(t) = L^{\text{-}1}\{H(s)\} = L^{\text{-}1}\{F(s)\cdot G(s)\} = \int_{0}^{t}\! f(t-\tau)g(\tau) d\tau$$

(Voir Table 2-2 Properties of Laplace Transforms)

2.3 Transformation inverse de Laplace

Transformation inverse de Laplace de la fonction complexe F(s) est f(t)

$$L^{-1}[F(s)] = f(t) = \frac{1}{2\pi i} \int_{c-j\infty}^{c+j\infty} F(s) e^{st} ds \quad \text{for } t > 0$$

En pratique, la transformée inverse de Laplace n'est pas obtenue par intégration complexe mais avec le tableau des transformées Laplace. Souvent il faut transformé F(s) pour arrivé a une forme qui contienne seulement des composants trouvées dans ce tableau des transformées Laplace.

La méthode est la méthode des résidus (partial fraction expansion method).

La méthode des résidus

En automatique, F(s) est souvent une fonction rationnelle

$$F(s) = \frac{B(s)}{A(s)} = \frac{\sum_{j=0}^{n} B_{j} s^{j}}{\sum_{i=0}^{n} A_{i} s^{i}}$$

A(s) et B(s) sont des polynômes en s. En automatique, la plus grande puissance en s de A(s) dépasse la plus grande puissance en s de B(s). Si non, le numérateur B(s) faut être divisé par le dénominateur A(s) pour obtenir un polynôme en s plus une nouvelle fonction rationnelle.

Si F(s) est transformée dans une a somme de composantes

$$F(s) = F_1(s) + F_2(s) +F_n(s)$$

et les transformées inverse de Laplace $F_1(s), F_2(s), ..., F_n(s)$ sont trouvées dans le tableau des transformées Laplace

$$L^{-1}\{F(s)\} = L^{-1}\{F_1(s)\} + L^{-1}\{F_2(s)\} + \dots + L^{-1}\{F_n(s)\} = f_1(s) + f_2(s) + \dots + f_n(s)$$

La méthode des résidus est appliquée différemment suivent les types of pôles:

- a) pôles distincts
- b) pôles multiples
- c) pôles complexes conjugués

a) Fonction rationnelle avec des pôles distincts

Après la calculation des raciness de

$$A(s) = \sum_{j=1}^{n} a_{j} s^{j} = 0,$$

les zéros z₁, z₂,..,z_m et

$$B(s) = \sum_{i=1}^{n} b_{i} s^{i} = 0,$$

les pôles $p_1, p_2,...,p_n$, pour $n \ge m$, les polynômes numerateurr and dénominateur devient

$$F(s) = \frac{B(s)}{A(s)} = \frac{K(s+z_1)(s+z_2)..(s+z_m)}{(s+p_1)(s+p_2)...(s+p_n)}$$

Ça peut être transformé dans une forme retrouvèe dans le tableau des transformées Laplace

$$F(s) = \frac{B(s)}{A(s)} = \frac{K(s+z_1)(s+z_2)..(s+z_m)}{(s+p_1)(s+p_2)...(s+p_n)} = \frac{a_1}{(s+p_1)} + \frac{a_2}{(s+p_2)} + ... + \frac{a_n}{(s+p_n)}$$

Il faut calculer les valeurs des résidus a_k , pour k=1,2,...,n, pour les n-pôles $-p_k$, .

ak sont obtenues avec

$$\begin{split} & \left[(s + p_k) \frac{B(s)}{A(s)} \right]_{s = -p_k} = \\ & \left[(s + p_k) \frac{a_1}{(s + p_1)} + (s + p_k) \frac{a_2}{(s + p_2)} + ... + (s + p_k) \frac{a_k}{(s + p_k)} + (s + p_k) \frac{a_n}{(s + p_n)} \right]_{s = -p_k} = a_k \end{split}$$

qui donne pour ak

$$a_k = \left[(s + p_k) \frac{B(s)}{A(s)} \right]_{SS = -p_k}$$

b) Fonctions avec des pôles multiples

$$F(s) = \frac{B(s)}{A(s)} = \frac{\sum_{j=0}^{m} B_{j} s^{j}}{(s+p_{1})^{N_{1}} (s+p_{2})^{N_{2}} ... (s+p_{n})^{N_{n}}}$$

l'odre de multiplicité depasse 1, N_1 pour p_1 , N_2 pour p_2 ,, N_n pour p_n ,

$$F(s) = \frac{B(s)}{A(s)} = \frac{\sum_{j=0}^{m} B_{j} s^{j}}{(s+p_{1})^{N_{1}} (s+p_{2})^{N_{2}} ... (s+p_{n})^{N_{n}}}$$

$$=\frac{a_{N1}}{(s+p_1)^{N_1}}+\frac{a_{N_1-1}}{(s+p_1)^{N_1-1}}+\dots\frac{a_1}{(s+p_1)}+\frac{a_{N2}}{(s+p_2)^{N_2}}\dots+\frac{a_n}{(s+p_n)}$$

a_{Nk} sont obtenues comme montré dans l'éxemple du livre page 35-36.

(Partial-Fraction Expansion when F(s) Involves Multiple Poles)

c) Pôles complexes conjugués

Si p_1 et p_2 sont des pôles complexes conjugués,les résidus a_1 et a_2 sont aussi complexes conjugués.

Le tableau des transformées Laplace donne

$$L^{-1} \left[\frac{a_k}{(s+p_k)} \right] = a_k e^{-p_k t}$$

$$f(t) = L^{-1} [F(s)] = a_1 e^{-p_1 t} + a_2 e^{-p_2 t} + \dots + a_n e^{-p_n t}$$
 for $t \ge 0$

(Voir Exemples 2-4 to 2-5, A-2-14)

Partial-Fraction Expansion with MATLAB

Pour la fonction B(s)/A(s)

$$F(s) = \frac{B(s)}{A(s)} = \frac{\sum_{j=0}^{n} B_{j} s^{j}}{\sum_{i=0}^{n} A_{i} s^{i}} = \frac{\text{num}}{\text{den}}$$

le programme MATLAB est

num=
$$[B_n B_{n-1}...B_0]$$

den= $[A_m A_{m-1}...A_0]$

On calcule a_k avec

[r,p,k] = residue(num,den)

Les résidus a_k et les pôles p_k, donne

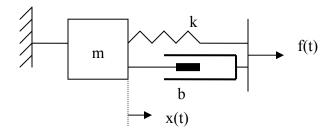
$$\frac{a_k}{(s+p_k)}$$
 pour $k=1,2,...,n$ (Voir Exemples 2-6 and 2-7)

2.4 <u>La résolution des équations différentielles</u> <u>linéaires et invariantes</u>

(Voir Exemples 2-8 and 2-9)

Exemple

a) Le système masse-amortisseur-ressort (m-b-k) est affectée par la force f(t) et a des conditions initiales zero. Obtien X(s).



la deuxiéme loi de Newton

$$m\ddot{x} + b\dot{x} + kx = f(t)$$

La transformée inverse de Laplace, pour des conditions initiales zero ms²X(s)+bsX(s)+kX(s)=F(s)

ou

$$(ms^2+bs+k)X(s)=F(s)$$

Ca donne la solution pour X(s)

$$X(s)=F(s)/(ms^2+bs+k)$$

La transformée inverse de Laplace pour iune force impulssion unité

$$F(s)=1$$

X(s) est

$$X(s)=1 / (ms^2+bs+k)$$

ou

$$X(s)=(1 / m)/(s^2+sb/m+k/m)$$

b) x(t) pour b=0 est obtenu de

$$X(s)=(1/m)/(s^2+k/m)=(1/k)(k/m)/(s^2+k/m)$$

Dans le tableau des transformées Laplace on trouve

$$L^{-1} \left[\frac{\omega}{(s^2 + \omega^2)} \right] = \sin \omega t$$

Pour

$$\omega^2 = k/m$$

$$X(s)$$
 est donné par $X(s)=(1/m)/(s^2+k/m)=(1/k)(k/m)/(s^2+k/m)=$ $(1/k)(\sqrt{k/m})(\sqrt{k/m})/(s^2+k/m)=(1/k)(\sqrt{k/m})(\omega)/(s^2+\omega^2)$

c.à.d

$$x(t)=(1/k)(\sqrt{k/m})\sin \omega t = (1/\sqrt{km})\sin (\sqrt{k/m})t$$

(Voir Exemples A-2-2 to A-2-17)