MCG 3307: Control Systems II Quiz 1
 March 11, 2010

Policy

The present test is closed book and closed notes. Illegible work and loose sheets will not be graded.

Problem

Consider a unity negative feedback control system with the following feed-forward transfer function

$$
\begin{equation*}
G(s)=\alpha \frac{s+5}{(s+1)\left(s^{2}+4 s+13\right)} \tag{1}
\end{equation*}
$$

where α is a real parameter in $[0,+\infty)$.
(1) (2 points): Find the intervals on the real axis where the root loci exist.
(2) (2 points): Find the number of asymptotes and, if they exist, the angles and the interception with the real axis.
(3) (2 points): For the pair of complex conjugates poles, find the angles of departure of the related branches.
(4) (2 points): The roots of the equation

$$
\begin{equation*}
\frac{\mathrm{d} \alpha}{\mathrm{~d} s}=0 \tag{2}
\end{equation*}
$$

are

$$
\begin{equation*}
s=-7.23, \quad s=-1.38 \pm 1.75 j \tag{3}
\end{equation*}
$$

Determine (or explain) if there are break-in and/or breakaway points.
(5) (2 points): Based on the information obtained in previous points sketch the root-locus.

Figure 1: Plot of the function $\tan ^{-1}(y / x)=\tan ^{-1}(\operatorname{Im}(s) / \operatorname{Re}(s))$ for $\operatorname{Im}(s)=2$ (dashed line) and $\operatorname{Im}(s)=3$ (solid line), and $\operatorname{Re}(s)$ in the range $[-6,3]$.
$\therefore \because$ Quiz 1-Solutions

Feedfoewrod transfer function

$$
G(s)=\alpha \frac{s+5}{(\Delta+1)\left(s^{2}+4 \Delta+13\right)}
$$

(1) Poos laic exist on the left of an odd number of poles and zeros. Fore this system we have

$$
\begin{aligned}
a(s) & =(s+1)\left(s^{2}+4 s+13\right)= \\
& =(s+1)(s+2-3 j)(s+2+3 \jmath)
\end{aligned}
$$

Therefore $n=3$,

$$
\begin{aligned}
& n_{1}=2-3 j \\
& n_{2}=2+3 j \\
& n_{3}=1
\end{aligned}
$$

Moreover

$$
\begin{aligned}
& b(s)=s+5 \\
& m=1 \\
& z_{1}=5
\end{aligned}
$$

Root lac on the real axis:

Root li exist on the real axis on the interval

$$
[-5,-1]
$$

(2) Since $n=3$ and $m=1$ we have $n-m=2$ asymptotes. One branch will end at the zero- z_{1}. Angles:

$$
\psi_{e}=\frac{ \pm 180^{\circ}(2 l+1)}{m-m}, \begin{aligned}
l & =0,1, \ldots, n-m \\
& =0,1
\end{aligned}
$$

Therefore

$$
\begin{aligned}
& \psi_{1}=\frac{180^{\circ}}{2}=90^{\circ} \\
& \psi_{2}=\frac{3 \times 180^{\circ}}{2}=-90^{\circ}=270^{\circ}
\end{aligned}
$$

Interception:

$$
\begin{aligned}
\beta=-\frac{\sum r_{i}-\sum z_{i}}{m-m} & =-\frac{1}{2}[(2+2+1)-5] \\
& =-\frac{1}{2}[0]=0
\end{aligned}
$$

(3) Considers the pole $s=-p_{1}=-2+3 j$. The phase angles with respect to the other poles are

$$
\begin{aligned}
& \phi_{2}=90^{\circ} \\
& \tan \phi_{1}=\frac{3-0}{-2-(-1)}=\frac{3}{-1}=-3 ; \phi_{1} \simeq 108^{\circ} \text { (plot) } \\
& \tan \theta_{1}=\frac{3-0}{-2-(-5)}=\frac{3}{3}=1 ; \theta_{1}=45^{\circ} \text { (plot) }
\end{aligned}
$$

Angle of departure (pole of multiplicity 1)

$$
\begin{aligned}
\gamma & =180^{\circ}-\sum \phi_{i}+\sum \theta_{i} \\
& =180^{\circ}-\left(90^{\circ}+108^{\circ}\right)+45^{\circ} \\
& =27^{\circ}
\end{aligned}
$$

for the pole at- n_{3} is -27°
(4) No, there are neither break -in nor break-array ports siree two roots are complex conjugates, and the real one does not belong to the rost-laus as explained in point 1 .
(5)

