Université d'Ottawa Faculté de génie

Département de génie mécanique

MCG 4134: Robot Design and Control

Winter 2012

Instructor: Dr. Davide Spinello email: dspinell@uottawa.ca office: CBY A612 phone: 613.562.5800 ext. 2460 office hours: Take an appointment by email

Lecture: MCD 121, Tuesday 17:30 - 20:30

Tutorial: LMX 220, Thursday 16:00 - 17:30 CBY B109C (computer room), only for Matlab tutorials

Textbook: Spong M. W., Hutchinson S., Vidyasagar M. Robot Modeling and Control. Wiley, 2006

Web page: http://by.genie.uottawa.ca/~spinello/webpage/teaching.html

TA: Elisha Pruner email: EPRUNER@uottawa.ca

Course Outline

Classification of robot manipulators. Review of rigid motions. Forward and Inverse Kinematics. Independent joint control. Point-to-point control. Path planning and trajectory control. Computed torque technique. Compliance and force control. Sensory components for robot control.

Description and objectives

This course presents the concepts of robot manipulators kinematics and dynamics, and teaches methods for designing classical linear controlles to achieve desired motions of robot manipulators, with a brief introduction on sensory components for feedback control of robotic systems. Students will develop the capability of analyzing the motion of robot manipulators and of designing simple controllers to regulate their behaviour.

Exams: policy and dates

All exams will be closed book - closed notes. A formula sheet will be provided by the instructor if necessary.

Illegible work and loose sheets will not be graded. If a student cannot attend a test/exam due to a medical condition, certified by a doctor, he/she must notify the instructor in advance. Unexcused absence from an exam will result in a grade of 0 for that exam.

The dates of the mid-term exam can be changed within the first week of class, according with specific exigences of the students.

Mid-term exam LMX 220, Thursday Feb 16 16:00 - 17:30

Final exam TBD

Computer oriented assignments

Two computer oriented problems will be assigned during the term. Assignments will be individual.

Marks

Marks from computer oriented assignments and mid-term exam determine the semester mark S, computed as follows:

Mid-term exam	60%
Computer oriented assignments	40%
Total of semester (S)	100%

This mark will be combined with the final exam mark F in the following way:

0.6F + 0.4S

If F < 55%, regardless of the mark of the semester S the overall course grade will be F.

Regulations on Academic Fraud

The following link provides information regarding academic fraud, including the Regulation on Academic Fraud which provides information on the definition of fraud, the disciplinary process and the consequences of dishonest behaviour: http://web5.uottawa.ca/mcs-smc/academicintegrity/regulation.php

Suggested problems

Chapter 2: 2-1; 2-2; 2-15; 2-20; 2-22; 2-24; 2-37; 2-38; 2-39; 2-41

Chapter 3: 3-2; 3-3; 3-4; 3-5; 3-6; 3-7; 3-8; 3-9; 3-11; 3-12; 3-13; 3-14; 3-15; 3-16; 3-18; 3-21

Chapter 4: 4-1; 4-2; 4-6; 4-7; 4-13; 4-14; 4-15; 4-16; 4-17; 4-18; 4-20; 4-21

Lecture	Reading	Topic
1: Tu, Jan 10	1.2; 1.3; 2.1 - 2.7	Robotic manipulators and their classification; Review of rigid bod-
		ies kinematics
2: Tu, Jan 17	3.1; 3.2	Kinematic chains; The Denavit-Hartenberg convention
3: Tu, Jan 24	3.3	Inverse kinematics
4: Tu, Jan 31	4.1; 4.2; 4.3; 4.4	Angular velocity: the fixed axis case; Skew symmetric matrices;
		Angular velocity: the general case; Addition of angular velocities
5: Tu, Feb 7	4.6; 4.7; 4.8	Derivation of the Jacobian; The tool velocity; The analytical Jaco-
		bian
6: Tu, Feb 14		$\operatorname{Mid-term}\operatorname{exam}^1$
Feb 19 - Feb 25		Study week
7: Tu, Feb 28	4.9; 4.10; 4.11; 4.12	Singularities; Static force/torque relationships; Inverse velocity and
		acceleration; Manipulability
8: Tu, Mar 6	5.1; 5.2; 5.5	The configuration space; Path planning using potential fields; Tra-
		jectory planning
9: Tu, Mar 13	6.1; 6.2; 6.3; 6.4	Actuator dynamics; Independent joint model; Set-point tracking;
		Feedforward control
10: Tu, Mar 20	7.1; 7.2; 7.3	The Euler-Lagrange equations; Kinetic and potential energy; Equa-
		tions of motions; Some common configurations
11: Tu, Mar 27	8.1; 8.2; 8.3	PD control revisited; Inverse dynamics; Robust and adaptive mo-
		tion control
12: Tu, Apr 3	11.1; 12.1	The geometry of image formation; design considerations
13: Tu, Apr 10		Examples and questions

Tentative lecture schedule

¹ The midterm exam will cover topics lectured up to lecture 5 (remind: this is a *tentative* lecture schedule).